
J
H
E
P
0
1
(
2
0
0
8
)
0
3
2

Published by Institute of Physics Publishing for SISSA

Received: November 29, 2007

Accepted: December 31, 2007

Published: January 14, 2008

More about QCD on compact spaces

Thomas DeGrand,a Roland Hoffmannab and Johannes Najjarac

aDepartment of Physics, University of Colorado,

Boulder, CO 80309 U.S.A.
bDepartment of Physics, University of Wuppertal,

42097 Wuppertal, Germany
cInstitute for Theoretical Physics, University of Regensburg,

93040 Regensburg, Germany

E-mail: degrand@aurinko.colorado.edu, hoffmann@pizero.colorado.edu,

johannes.najjar@physik.uni-regensburg.de

Abstract: We present some results about spontaneous breaking of global symmetries

for four-flavor, three color QCD on compact spaces with two short directions. When the

two short directions have equal length and identical boundary conditions, there is a single

transition. When the two short directions have boundary conditions of opposite parity and

are of roughly equal extent, the C-breaking and deconfinement transitions separate. When

the two short dimensions are of different length, the transitions are modified in qualitative

agreement with expectations from dimensional reduction. These features resemble the

situation in pure gauge simulations at small and large number of colors.
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1. Introduction

The geometry of an embedding space can influence the phase structure of a field theory.

The most familiar example of such behavior is the use of a compact temporal dimension

to study a field theory at finite temperature: when the compact dimension is sufficiently

small, the theory can undergo a phase transition. If the field theory is a gauge theory, the

transition is typically a passage from a confined phase to a deconfined one, and the order

parameter is the Polyakov line wrapping around the shortest dimension. For an SU(N)

gauge theory, the Polyakov loop orders along one of the elements of the Z(N) center of the

gauge group.

When the compact space is used to describe thermodynamics, fermion fields have

antiperiodic boundary conditions in the temporal/thermal direction. Fundamental repre-

sentation fermions break the Z(N) center symmetry in the action, but a phase transition

might still occur. When it does, the Polyakov loop takes an expectation value which is

real; the other Z(N) orientations are disfavored. This is not the case if the short direction

in one in which fermions have periodic boundary conditions. Last year Ünsal and Yaffe [5]

(building on earlier work by them and by Kovtun [6 – 8]) pointed out that the effects of

fermions on these transitions is strongly dependent on their boundary conditions, and that

when fermions had periodic boundary conditions in the shortest dimension, the most likely

possibility is that the fermions drive the system into a phase of broken charge conjugation

(basically by forcing the Polyakov loop into one of the complex directions of Z(N)). This

ordering behavior was anticipated almost twenty years ago by van Baal [3, 4].

Two of us [1] recently performed simulations in SU(3) with fundamental-representation

fermions, which revealed this behavior. The only related numerical work we are aware of
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is by Lucini, Patella, and Pica [2], who associated a persistent baryon current around the

compact direction with the breaking of center symmetry.

In this note we extend our previous work and explore what happens when there are two

small compact dimensions. We expect (and see) that when the two short directions have

identical (periodic) boundary conditions, there is still a single critical point. However, when

one of the directions is periodic and the other is antiperiodic, there are separate ordering

transitions for the two directions.

We then look briefly at the case where the two short directions have different lengths.

We find that there is still a symmetry breaking transition which orders the shortest length,

but that any transition in the next-shortest length is either washed out or pushed to much

smaller coupling (much higher bare β) than what it would have been if it were the shortest

direction. It happens that similar behavior has been observed in simulations of pure gauge

theory: SU(2) gauge theory in four and five dimensions by ref. [9], and in simulations of

large-N gauge theory in three dimensions, by refs. [10] and [11]. We believe that one can

make a qualitative explanation of our observations using dimensional reduction.

Our simulations are completely standard: we have three dimensions with periodic

boundary conditions and one time dimension with anti-periodic boundary conditions for

the fermions. The gauge fields are periodic in all directions.

The present study uses unrooted (i.e. four-taste) staggered fermions. We work with

an improved action to minimize cutoff effects. We employ the Hybrid Monte Carlo algo-

rithm. Our code is based on the publicly available MILC package1 for improved staggered

quarks [12 – 14] on a Symanzik gauge background. We have taken two values for the quark

mass, amq = 0.05 and 0.2. Our simulations typically use about 1200 molecular dynamics

trajectories per point, with significantly more for runs near the transition in difficult cases.

We use the phase of the Polyakov loop (which does not require renormalization) as our

order parameter. We map the phase range between two SU(3) center elements to the full

circle by taking (P/|P |)3 and then project onto the real axis,

S(P ) = Re(P/|P |)3 = cos(3 arg P ) . (1.1)

When the system is in its unbroken phase, we expect that 〈S(P )〉 = 0; when the Polyakov

loop only takes values in Z(3), arg P = 2πj/3, j = 0, 1, 2, and 〈S(P )〉 = 1. We can define

the location of a transition by 〈S(P )〉 = 1/2. To make this determination, we fit S(P ) to

the phenomenological formula

S(P )β =
1

2
(1 + tanh(α(β − βcrit))) (1.2)

where α is just an arbitrary parameter, while varying the number of β values we keep near

the inflection point.

In the next section we give an overview of our numerical results, then we describe

the case of two equal-length short dimensions. In the following section we consider short

directions of different length and describe simulations of pure gauge theory which produce

similar behavior.

1http://www.physics.utah.edu/~detar/milc/
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geometry 4×102×10 4×102×6 4×102×4 6×102×4 10×102×4

βcrit(x), amq =0.2 6.28(1) 6.20(1) 6.46(1) - -

βcrit(t), amq =0.2 - - 6.037(4) 5.99(1) 5.96(5)

βcrit(x), amq =0.05 5.750(6) 5.760(7) 6.12(2) - -

βcrit(t), amq =0.05 - - 5.496(5) 5.460(4) 5.405(5)

Table 1: The critical β’s for amq = 0.2 and 0.05 for various geometries (Nx×Ny ×Nz ×Nt). A

dash indicates that we could not observe a transition.
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Figure 1: S(P ) in the x and y direction vs. β at amq = 0.2 for 42×102 lattices.

2. The thermal and C-breaking transitions

2.1 Two periodic directions

We first performed simulations with two short directions of the lattice, both with periodic

boundary conditions for the fermions. On symmetry grounds, we expect to see a single

phase transition separating a confining phase from a phase where charge conjugation is

broken. This phase is characterized by a Polyakov loop oriented in one of the complex

directions, in either or both of the two short directions. To check this, we performed

simulations at amq = 0.2 on a 42 × 102 lattice. A graph of the relevant S(P )’s is shown in

figure 1. We observed a single critical point for a transition in the x and y directions, and

were unable to identify any correlations between the value of the Polyakov loops in the two

directions. Fitting the behavior of the two Polyakov loops separately gave βcrit(x) = 6.33(1)

and βcrit(y) = 6.31(1), which is consistent within uncertainties of the presence of a single

transition. The transition is pushed to somewhat weaker coupling than βcrit for a 4 × 103

lattice (see table 1). The Polyakov loops in the two directions do slightly communicate

with each other.
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Figure 2: S(P ) in the t direction vs. β at

amq = 0.05 for 4×102×4 lattices.

Figure 3: S(P ) in the x direction vs. β at

amq = 0.05 for 4×102×4 lattices.

2.2 One periodic and one antiperiodic direction

We next turn to simulations in which the temporal direction and one of the spatial directions

have the same length, and both are much shorter than the other two directions. In this

case, since no symmetry relates the two short directions, we expect to see two separated

phase transitions, one in which the temporal Polyakov loop orders in a real direction and

one in which the spatial loop orients in a complex direction. Our results are shown in

table 1. An example of our observations is shown in figures 2–3.

The transitions separate, with the t transition, which occurs at lower β remaining close

to its value from simulations with only one short direction. The x transition notices that

the Polyakov loop in the t direction has ordered and shifts to higher β than its value when

the t direction is long and the Polyakov loop is disordered.

3. QCD in asymmetric spaces

3.1 Observations

We now consider the case that we have two short directions of different size, one with

periodic and one with antiperiodic boundary conditions for the fermions. In particular, we

take N = 4 for the shortest direction and N = 6 for the next-shortest one. Results are

again summarized in table 1. We found that the Polyakov loop in the shortest direction

continues to undergo an ordering transition exactly as if there was only one short direction:

that is, along the real axis if the shortest direction had antiperiodic boundary conditions,

or into one of the complex directions if the boundary conditions were periodic. Its location

shifts by a small amount. However, once the shortest direction had ordered, the transition

in the next-shortest direction becomes very smooth (we cannot say if it has disappeared

or not) and moves to very large β. We illustrate this phenomena in figures 4 and 5, from

simulations with amq = 0.2. Here the length in the periodic (“x”) direction is L = 4 and

the antiperiodic (“t”) direction has L = 6, so the transition in the x direction persists while

the t transition is lost.
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Figure 4: S(P ) in the t direction vs. β at

amq = 0.2 for 4×102×6 lattices.

Figure 5: S(P ) in the x direction vs. β at

amq = 0.2 for 4×102×6 lattices.

When we make the t direction shorter, the situation is reversed: the t transition

remains, while the x transition becomes very round and moves to very high β or disappears.

Compare figures 6–7.

3.2 Connections to pure gauge theory, and a qualitative explanation

We are unaware of other simulations of QCD-like theories (with dynamical fermions) that

exhibits behavior like the one described above. However, gauge theories in three, four and

five dimensions actually behave in a similar way.

We give an illustration, using our own simulations. Take a pure gauge theory with the

Wilson gauge action, periodic in all four directions. When one direction is short compared

to the other ones we have the familiar situation of a field theory at finite temperature,

which undergoes a confinement-deconfinement transition at a critical T (or equivalently,

at a critical value of the bare gauge coupling constant). For the Wilson action, this critical

coupling is about β = 5.69 for N = 4 and 5.9 for N = 6.

Now perform simulations with two short but unequal directions. At a low value of β,

typically close to, but shifted higher from the critical coupling for one short direction, the

Polyakov loop in the short direction will order. If we then decrease the lattice spacing, we

find that the critical coupling at which the Polyakov loop in the next-smallest direction also

orders is pushed to much higher β than it would be in the symmetric (one short direction)

case.

We illustrate this result from simulations with a (4×6×12×12) lattice: The phase of

the Polyakov loop in the N = 6 direction shows no evidence of a transition below at least

β = 6.3 (see figure 8).

Similar behavior has been reported in two contexts. The authors of ref. [9] carried

out simulations in four and five dimensional SU(2) gauge theory with two short directions.

Their physical motivation was to study beyond-Standard Model scenarios with gauge fields

in the bulk of compact extra dimensions. Their simulations with (2× 4× 16× 16) lattices

(and five dimensional analogs), show what we have just described.
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Figure 6: S(P ) in the t direction vs. β at

amq = 0.2 for 6×102×4 lattices.

Figure 7: S(P ) in the x direction vs. β at

amq = 0.2 for 6×102×4 lattices.
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Figure 8: S(P ) for Polyakov loops in the L = 6 direction from pure gauge simulations on a

4×6×12×12 lattice.

The other context is the large-N limit. Bursa and Teper [10] and Narayanan, Neu-

berger, and Reynoso [11] have performed simulations of three dimensional gauge theories

in asymmetric lattices. Both groups observe that a sufficiently short length in the shortest

direction pushes the ordering transition in the next-shortest direction to higher β.

Bursa and Teper describe the phenomenon in terms of dimensional reduction. As the

shortest direction of the simulation volume is reduced, the four dimensional gauge theory

reduces to a three dimensional gauge theory with adjoint scalars which are the remnants of

the gauge fields oriented in the short direction [15, 16]. Bursa and Teper predict that the

location of the second transition scales as L2/L1 (the ratio of the second-shortest distance

to the shortest one), although their numerical estimate does not seem to be reliable for

three colors and L2/L1 = 6/4.

Dimensional reduction does give a qualitative explanation for the smooth behavior

seen in figures 4, 7, and 8: The gauge group is SU(3). Three dimensional SU(3) pure gauge

theory is known to have a second-order confinement-deconfinement transition with two-
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dimensional three-state Potts model exponents [17] as predicted by Svetitsky and Yaffe [18].

This already explains why the pure gauge transition is so smooth: it is second order,

probably further smoothed by being on a small lattice. The fermionic results are smoother

still. In four dimensions, the first order nature of the pure gauge transition is robust against

the breaking of Z(3) induced by dynamical fermions. But no second order transition can

survive explicit symmetry breaking, so we can only be seeing crossover behavior in this

case. This result does not depend on whether the fermions spontaneously break C, or not.

4. Conclusion

We performed simulations of four-flavor, three-color QCD in systems with two small spatial

directions. These systems can undergo phase transitions in which the Polyakov loops

in different directions can order. When the two short directions are of equal length, it

appears that the Polyakov loops in different directions are not strongly correlated, but

when one direction is shorter than another one, it inhibits the ordering in the second-

shortest direction. Dimensional reduction gives a qualitative, though not quantitative,

explanation for the latter phenomenon. What is amusing about this behavior is that it is

shared by pure gauge theories at both small and large N .
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[6] P. Kovtun, M. Ünsal and L.G. Yaffe, Non-perturbative equivalences among large-Nc gauge

theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034

[hep-th/0311098].
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